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On the instability of small gas bubbles moving 
uniformly in various liquids 

By R. A. HARTUNIAN" and W. R. SEARS 
Graduate School of Aeronautical Engineering, Cornell UTiiversity, Ithaca 

(Received 17 M a y  1957) 

SUMMARY 
The instability of small gas bubbles moving uniformly in 

various liquids is investigated experimentally and theoretically. 
The experiments consist of the measurement of the size and 

terminal velocity of bubbles at the threshold of instability in 
various liquids, together with the physical properties of the 
liquids. The results of the experiments indicate the existence 
of a universal stability curve. The nature of this curve strongly 
suggests that there are two separate criteria for predicting the 
onset of instability, namely, a critical Reynolds number (202) 
and a critical Weber number (1.26). The former criterion 
appears to be valid for bubbles moving uniformly in liquids 
containing impurities and in the somewhat more viscous liquids, 
whereas the latter criterion is for bubbles moving in pure, 
relatively inviscid liquids. 

The theoretical analysis is directed towards an investigation 
of the possibility of the interaction of surface tension and hydro- 
dynamic pressure leading to unstable motions of the bubble, 
i.e. the existence of a critical Weber number. Accordingly, the 
theoretical model assumes the form of a general perturbation in 
the shape of a deformable sphere moving with uniform velocity 
in an inviscid, incompressible fluid medium of infinite extent. 
The calculations lead to divergent solutions above a certain 
Weber number, indicating, at least qualitatively, that the interaction 
of surface tension and hydrodynamic pressure can result in 
instabilities of the bubble motion. 

A subsequent investigation of the time-independent equations, 
however, shows the presence of large deformations in shape of 
the bubble prior to the onset of unstable motion, which is not 
compatible with the approximation of perturbing an essentially 
spherical bubble. This deformation and its possible effects on 
the stability calculation are therefore determined by approximate 
methods. From this it is concluded that the deformation of the 
bubble serves to introduce quantitative, but not qualitative, 
changes in the stability calculation. 

* Now at Cornell Aeronautical Laboratory, Buffalo, New York. 
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1. INTRODUCTION 
Very small bubbles rise in a rectilinear path in a body of liquid at rest. 

It is found, however, that if one forms larger bubbles in liquids of relatively 
small viscosity, a critical size for each liquid is reached at which the bubble 
suddenly assumes an oscillatory trajectory. The actual path is most often 
helical, although the bubble is occasionally seen to oscillate in a single plane 
as it rises. The bubbles in this region are seen to be slightly deformed; 
they seem to have the shape of oblate spheroids. Still larger bubbles become 
more deformed and rise rectilinearly, but with a rocking motion about the 
axis in the direction of their motion. Finally, a size is reached at which the 
bubble rises rectilinearly maintaining a spherical shape on its upper surface 
but a very irregular, fluctuating shape on its lower surface. These bubbles 
have been called ‘ spherical-cap ’ bubbles. For more viscous liquids, such 
as mineral oil, the bubbles simply become more and more deformed as the 
size is increased, with no oscillations in shape. Accordingly, all bubbles 
in such liquids rise rectilinearly. 

It is the purpose of this paper to examine experimentally the conditions 
necessary for the onset of oscillations in relatively inviscid liquids, and to 
‘develop a theory to predict these ‘ critical ’ conditions. 

Most of the previous theoretical research has been limited to solutions. 
for the drag of rigid and fluid spheres moving slowly and uniformly in an 
infinite medium. Usually, the inertial terms in the Navier-Stokes equations- 
have been neglected. Notable exceptions to this trend of research are the 
solutions for the shape and motion of spherical-cap bubbles by Davies & 
Taylor (1950), and for the drag of rigid spheres at a Reynolds number of 
about 100 by Kawaguti (1955). Kawaguti studied the stability of the flow 
about spheres and found instability at a Reynolds number of 51, which is 
approximately one-half of the observed value for rigid spheres. His 
treatment is not applicable to fluid spheres because of the slip boundary 
condition required. Recently, SafTman (1956) obtained relations for the 
terminal velocities of spiralling bubbles in water by assuming the flow near 
the front of the bubble to be inviscid and considering the distribution of 
pressure in the vicinity of the stagnation point. By treating the planar 
oscillating bubbles in the same way, he arrived at an equation which 
determines the stability of the rectilinear motion of bubbles in water. The 
value of the critical Weber number U(pr,/T)1/2 deduced by this method is 
at variance with experimental results by a factor of two. (Here U denotes 
the speed at which the bubble rises, p the density of the liquid, re the 
equivalent radius (3 x volume/47r)ll3 of the bubble, and T the surface 
tension.) 

Rayleigh solved the problem of the oscillation of a liquid or gaseous 
sphere at rest in an infinite medium otherwise at rest (see Lamb 1932, 
p. 473). The more general solution for the oscillations of a gaseous sphere 
moving with a uniform velocity U in an infinite medium, to be obtained 
in the ensuing sections, reduces to Rayleigh’s result when U is equated 
to zero. 
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There has been a considerable amount of experimental investigation on 
the rates of rise of bubbles in various liquids (Hoefer 1913 ; Miyagi 1925 ; 
Bryn 1949; Datta et al. 1950; etc.). Rosenberg (1950) and particularly 
Haberman & Morton (1953) have conducted by far the most systematic 
experiments covering the spectrum of most of the pertinent variables. The 
latter have also made an exhaustive study of the literature, collating the data 
of the previous experimenters and integrating these data with their own. 
Rosenberg improved the experimental technique and repeated the experi- 
ments on the rate of rise of air bubbles in water over a wide range of bubble 
sizes. He suggested the use of the three dimensionless parameters: drag 
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Figure 1. Drag coefficient as a function of Reynolds number for ellipsoidal and 
(Courtesy of David Taylor Model spherical-cap bubbles in various liquids. 

Basin, Navy Department.) 

,coefficient C, = (8/3)(gr,/U2), Reynolds number Re = 2pUr,/p, and a third 
parameter M = gp4/pT3 for the description of bubble motion in liquids. 
Here g denotes the acceleration due to gravity and p the coefficient of 
viscosity. Haberman & Morton, using the same experimental technique as 
Rosenberg, investigated the effect of variation of liquid properties on the 
motion of air bubbles and also made an experimental evaluation of the wall 
effect. They used eleven fluids with different properties (the same fluid at 
.different temperatures being considered to be a new fluid) and three tanks of 
varying dimensions. In an attempt to correlate their data, they plotted their 
results in terms of the basic dimensionless parameters cited above. Figure 1 
gives the experimental results in terms of the drag coefficient, Reynolds 
number and M ,  whereas in figure 2, the data are presented in terms of the 
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drag coefficient, the Weber number and M .  Examination of these curves 
indicates that there is no completely systematic arrangement with changes in 
M. Accordingly, it can be concluded that the variables considered in these 
non-dimensional parameters are insufficient for a complete description of 
bubble motion. Nevertheless, there is a definite trend towards categorizing 
the bubbles in groups according to the values of M .  Figure 2 shows good 
correlation among the ‘fast’ fluids ( M  = 10-l0 to 10-8) and sets a clear 
distinction between these fluids and the ‘ slow ’ fluids ( M  = lo-’ to 
This paper is mainly concerned with the ‘ fast ’ fluids. 
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Figure 2. Drag coefficient as a function of Weber number for air bubbles rising at 
(Courtesy of David Taylor Model their terminal velocity in various liquids. 

Basin, Navy Department.) 

In  examining the two plots, it is seen that the minimum drag attained 
by bubbles in various test liquids occurs at different Reynolds numbers, 
but at essentially the same Weber number (1.0 to 1.3). The correlation 
of all the curves for the ‘ fast ’ fluids above a Weber number of about 1.3 
indicates the importance of hydrodynamic and surface-tension forces in 
this range. 

2. EXPERIMENTS 

The experimental study was conducted to ascertain a conjecture of 
Professor von KQrmAn that the Weber number should be a significant 
parameter involved in the stability of gas bubbles rising in liquids. 
Accordingly, measurements of the size and terminal velocities of bubbles 
which just become unstable were made in twelve liquids. In  addition, the 
physical properties of the liquids were measured. 
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Figure 3 (plate 1) is a photograph of the experimental arrangement. 
The cylindrical tube is 5.7 cm in diameter, which is sufficient to make 
any wall effect negligible. The bubble-generating device consists of a 
T-section made of capillary tubing of uniform bore (0.7 mm inside diameter)’ 
and two rubber syringes. This is a modification of the system employed by 
Saffman (1956). A shop microscope was used to measure the length (from 
which the equivalent radius is calculated) of small bubbles formed in the 
vertical section of the T-shaped capillary. Fine black thread tied about 
the tube at two points a known distance apart (50.2 cm) provided the 
distance markings for the velocity measurements. These were placed 
within the region where the bubbles had attained their terminal velocities. 
The time taken for the bubbles to traverse this distance was measured by 
means of a stop watch. This measurement is the least accurate in the 
experiment. An estimate of the accuracy attainable is approximately 5 % 
for the more rapidly moving bubbles. The viscosity of the liquids was 
measured by means of an Ostwald viscometer, and the surface tension by 
a DuNuoy tensiometer. The density of each liquid at the appropriate 
temperature was obtained from the Handbook of Chemistry and Physics. 

The experimental procedure consisted first of measuring the physical 
properties of the test liquid. Air was bubbled freely through the liquid 
in order to reduce any tendency towards diffusion through the bubble 
surface. A single bubble was then formed in the vertical section of the 
capillary T by applying pressure to the syringe containing air until the 
desired quantity of air had penetrated the liquid in the vertical section 
of the T, at which time the syringe containing the test liquid was squeezed, 
thus cutting off the desired volume of air. By continued pressure on the 
latter syringe, the bubble could be made to advance up the capillary tube 
to a point where its length was measured by the shop microscope (or a rule 
with fine divisions, for larger bubbles). Following this operation, the 
bubble was forced into the fluid medium at the orifice and carefully released 
from the orifice. The time taken for it to cross the markings was measured. 
Allowing sufficient time for the wake effects of the previous bubble to be 
dissipated, another bubble was formed and the process repeated. Starting 
with small bubbles and forming successively larger ones, a ‘critical’ size 
was found for each liquid at which the bubble would just begin to oscillate. 
Many bubbles formed about this size then made possible a better determina- 
tion of the critical conditions for each liquid. Upon completion of the test 
for a given liquid, a second temperature reading was taken, and, if any 
difference from the initial reading was detected, the physical properties of 
the liquids were obtained by interpolation from tables using the average 
temperature. 

From estimates of the experimental accuracy of the individual measure- 
ments, it is expected that probable errors of the order of 10% may occur in 
the calculation of the critical Reynolds and Weber numbers from the data. 
It is clear from this fact that only significant trends were being sought 
from these experiments. 
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Since it has been found that slight concentrations of impurities in 
liquids have profound effects on the motion of gas bubbles through them 
(Gorodetskaya 1949 ; Stuke 1952), great care was exercised in ascertaining 
the purity of the test liquids. Figure 4 compares the drag coefficients of 
bubbles in water containing slight concentrations of surface-active substances 
with those in filtered water. Tap water and test liquids obtained from 
ordinary storage drums were found to behave in a manner analogous to 
water containing surface-active substances. The drag coefficient in the 
impure liquids is seen to follow the curve for rigid spheres up to a Reynolds 
number of 200 or so. Of particular importance is the fact that the drag 
coefficient of bubbles in pure liquids is considerably smaller than that in 
the impure liquids. 
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Figure 4. Drag coefficient as a function of Reynolds number for bubbles rising at 
their terminal velocity in water containing various surface-active materials. 
(Courtesy of David Taylor Model Basin, Navy Department.) 

Aside from the criterion of purity, an attempt was made to select different 
liquids with some similar physical properties. For example, methyl alcohol 
and ethyl alcohol have essentially the same surface tension and density, 
but radically different viscosities. 

Since the experiments were designed to reveal the significance of the 
Weber . number in determining the instability of bubbles, liquids of 
relatively low viscosity were selected to reduce the role played by the 
Reynolds number. Indeed, as discussed in a previous section, bubbles 
rising in very viscous liquids (roughly, M 3 do not become unstable. 

From the experimental determination of the critical bubble size and 
terminal velocity, as well as the properties of the various liquids, the critical 
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Figure 3. Photograph of experimental arrangement. 
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Reynolds, Weber, Bond r,(pg/T)lI2 and Froude U2/gr, numbers were 
calculated (table 1). The values obtained by other experimenters are also 
listed. Figure 5 is a plot of these results in terms of the Weber number 
and Reynolds number. The average curve drawn through the experimental 
points is seen to give the strong indication that there are two distinct criteria 
for determining the onset of instability in gas bubbles rising in liquids of 
relatively low viscosity. There is one branch of the curve that is independent 
of the Weber number, with the average value of 202 for the Reynolds number, 
whereas the other branch (at Re > 202) is independent of the Reynolds 
number and has the average value of 1-26 for the Weber number. 

U w 

w 
i= 
_I 

f 0.5 
t 
0 

0 

Figure 5 .  Stability curve (critical Weber number as a function of Reynolds number 
for various liquids). 

It seems significant that the former branch is made up not only of the 
more viscous liquids but also the impure ones. This may be taken as 
added evidence that impurities affect particularly the conditions at the surface 
of the bubble, introducing, it would seem, an increased apparent viscosity. 

When the nature of the stability curve became known, an experimental 
technique was developed to shed further light on the distinction between 
the two types of instabilities. Vegetable dye was added to the liquid in 
the syringe attached to the vertical section of the bubble-generating device 
(figure 3). By carefully forming a bubble, it was possible to see a closed 
wake behind a stable bubble as it rose. By closer examination, the dye could 
be seen to be rolled up into a vortex ring symmetrically situated with respect 
to the bubble. I t  is significant that the wake could be seen only in the impure 
and more viscous liquids. When the bubble size was increased to give 
critical conditions, the bubble oscillated and the wake dispersed. When 
this same experiment was attempted with distilled water, the following 
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sequence of events was seen to occur: (a) as the bubble left the orifice, 
the dye formed a closed wake; ( b )  after rising an inch or so, the bubble 
oscillated several times and shed the wake ; (c )  upon shedding the dye, it 
rose uniformly and rectilinearly; and ( d )  if the bubble size at the orifice 
was just below the critical size for distilled water, it would begin to oscillate 
before it had reached the surface. A possible explanation of this behaviour 
is as follows : (a)  the presence of the dye in the otherwise pure liquid tended 
to transform its characteristics to those of the impure liquids; (b)  in 
accelerating from rest at the orifice to the terminal velocity for distilled 
water, the bubble had to pass through the ' critical Reynolds number ' (202), 
and since it possessed the properties of an impure liquid, the bubble oscillated 
enough to shed its wake ; ( c )  with the dye shaken from the surface of the 
bubble, the impurities were in effect removed, so that the bubble returned 
to its normal course in the pure water, i.e. it rose rectilinearly ; and finally, 
( d )  since the Weber number of a bubble increases (slightly) as it rises, owing 
to the reduction of the hydrostatic pressure and subsequent increase in 
volume (and therefore velocity), a bubble which was just sub-critical at the 
orifice might become critical as it rose. Fairly conclusive evidence regarding 
the action of the dye as an impurity is provided by the fact that if no dye 
was added to the liquid the short oscillation an inch or so above the orifice 
was never observed. The  experiment described above seems to support 
the existence of two different types of instability, both observable with one 
bubble. 

Referring back to figure 2, it is seen that the minimum drag for bubbles 
in liquids-with small values of M occurs at a fairly universal value of the 
Weber number. I n  addition, the value of this Weber number is in agreement, 
within the limits of accuracy, with the experimentally determined critical 
Weber number for oscillations, i.e. 1-26. The  fact that the minimum drag 
coefficient and the onset of oscillation of the bubbles occur at almost the 
same Weber number is construed by the authors as providing additional 
evidence for the existence of a critical Weber number, since the oscillatory 
trajectory would contribute substantially to the observed rapid increase 
in drag with increasing Weber number beyond the critical value. Of course, 
the deformation of the bubbles at these Weber numbers is also a contributing 
factor to the increase in drag. 

The stability curve (figure 5) is not quite analogous to the familiar 
stability diagrams in which a curve separates regions of stability from 
regions of instability. The  actual meaning of the present stability curve 
is that for any liquid capable of producing unstable bubbles, the critical 
Weber number and critical Reynolds number must be such as to fit 
somewhere on this curve. Indeed, bubbles rising at Reynolds numbers less 
than 202 in Reynolds-number-dependent liquids are invariably stable, 
independent of the value of the Weber number, while bubbles 
rising in pure, relatively inviscid liquids at Reynolds numbers greater 
than 202 remain stable until they attain the value of the critical Weber 
number, 

c z  
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From table 1, it may be seen that there is no systematic variation of the 
Bond number with the Reynolds number at critical conditions, but that the 
critical Froude number increases fairly regularly with increasing Reynolds 
number. The latter result may have been expected, since the Froude 
number is inversely proportional to the drag coefficient. That the high 
values of the Foude number occur for liquids which have the Weber number 
as a stability criterion corroborates the contention that instability in these 
liquids begins at low drag coefficients (actually, almost minimum drag). 

The duality of cause for instability is not peculiar to bubbles rising in 
liquids. Similar results have been observed in investigations on the stability 
of liquid jets issuing from circular orifices (Richardson 1950, p. 100). 
It has been noted that falling drops break up at a critical value of the Weber 
number (Lane & Green 1956, pp. 186-192). 

The following conclusions are drawn from the present experimental 
results. 

1. A universal stability curve which determines the critical conditions 
necessary for the onset of oscillations of bubbles in most common liquids 
appears to exist. 

2. The character of this curve strongly suggests that there are two 
distinct criteria for instability : 

(a) a critical Reynolds number (202) for the impure and somewhat 
more viscous liquids ; 

(b )  a critical Weber number (1.26) for pure, relatively inviscid 
liquids. 

3. There is no exact method for determining which of the two criteria 
will prevail in a given liquid. For the pure liquids, a fairly good require- 
ment that the Weber number be dominant is that the M number should 
have a value less than lk9. Unfortunately, the significant properties 
of ‘impure’ liquids do not seem to be reflected in their values of M, so 
that the liquids falling into this category can be identified only by 
experience. This implies that the important properties affected by 
impurities are not simply viscosity and surface tension, at least as these are 
usually measured. 

3. THEORY 
In  this section the stability of a deformable sphere in an inviscid, 

incompressible, irrotational, uniform flow to a general small perturbation 
in shape is calculated. In applying the results to the bubble problem, it 
is assumed that the hydrodynamic pressure and surface tension represent 
the most significant effects. The results indicate the possibility of small, 
high-frequency oscillaoons of the bubble at the lower Weber numbers, 
and divergence of the solutiop qt Weber numbers above a Critic4 value, 
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It will be argued that the region of small oscillations, when the damping 
effects of viscosity are taken into consideration, represents a stable motion 
of the bubble, whereas the divergent solutions actually imply the observed 
unstable motion. 

However, a subsequent investigation of the time-independent equations 
shows the existence of large deformations of the bubble prior to the onset 
of the unstable motion, which is not compatible with the approximation of 
perturbing an essentially spherical bubble. This deformation and its 
possible effects on the stability calculation are then determined by approxi- 
mate methods. From this, it is concluded that the deformation of the bubbles 
serves to introduce quantitative, but not qualitative, changes in the stability 
calculation. 

This approach to the problem differs significantly from that employed 
by Saffman (1956) in two respects. Firstly, it is assumed that the flow about 
the entire sphere is essentially inviscid, and secondly, in addition to that 
mode which represents a lateral velocity perturbation, changes in shape of 
the bubble surface are considered to be important. 

A. Theoretical assumptions and development of the boundary condition 
The theoretical analysis is concerned only with the instability of bubbles 

due to hydrodynamic pressure and surface-tension effects. The correlation 
obtained for the critical conditions in the pure liquids with M less than leg 
in terms of the Weber number (figure 5) gives significant evidence of the 
primary roles played by the hydrodynamic pressure and surface tension 
in the instability. That viscous effects are relatively unimportant in this 
phenomenon is, at first sight, somewhat surprising, considering the low 
Reynolds numbers encountered. However, the drag coefficient of the 
bubbles just prior to the onset of oscillations is approximately one-fifth 
that of a rigid sphere at the same Reynolds number. In  fact, rigid spheres 
do not attain such low drag coefficients until Reynolds numbers of the 
order of 4 x lo5 are reached. At these Reynolds numbers the pressure 
distribution about the sphere is essentially that obtained from potential 
theory. On the basis of this evidence, the theoretical model will have the 
form of a deformable sphere moving uniformly in an inviscid, incompressible 
fluid of infinite extent. 

Gravitational forces and the pressure of the gas within the sphere due 
to perturbations in the shape of the sphere will be neglected. Their effects 
may be shown to be much smaller than those of surface tension and 
hydrodynamic pressure for the size bubbles considered (re -=c 0.09 cm). 

Since the bubbles do not change volume appreciably as they rise, the 
perturbation of shape will be performed so as to maintain constant volume. 

Employing the usual spherical coordinates with the origin situated at 
the centre of the bubble, the equation for the surface of the bubble is denoted 
by 

v, $3 t )  = &I + i U ) % ( 4  41, (1) 
n= l  
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where R, is the equilibrium radius of the bubble, A7,(t) are small time- 
dependent quantities such that their squares may be neglected, and the 
Sn(8, 4) are spherical surface harmonics represented by 

m 

Sn(8,q5) = c, P7,(cos 8) + 2 (c, cos mq5 + d, sin mr,b)Pr(cos 8). (2) 

In  order to maintain constant volume A,(t) is taken to be zero ; thus the 
sum in equation (1) starts with n = 1. Let 

wL= 1 

An(t) = a, ent (3) 
where the coefficients a ,  are small (compared to R,) complex quantities, and 
h is a complex number to be determined. If the real part of h is negative, 
the ensuing motion is stable, whereas positive values of h will indicate a 
divergence of the mode in question. The surface of the perturbed bubble 
may accordingly be represented by the equation 

m 7L 

F(R,O,+,t) = R,+eat 2 2 an,ecosmq5-R = 0, 
n= 1 m=o 

(4) 

where it is understood that the argument of the P," is cos8 throughout 
the analysis. The boundary condition at the surface of the bubble may be 
derived from the condition 

DF/Dt = 0, (5) 

where DIDt is the usual convective derivative. Since we are assuming 
potential flow about the sphere, the velocity components at the surface of 
the perturbed sphere are of the forms 

vo = QUsin 8 + VQ + O(U&~J, (6) 

where the primes denote quantities of the first order in the perturbation 
amplitudes anm. If equations (4) and (6) are substituted into (5), the 
boundary condition on the surface of the perturbed bubble is obtained, to 
first order, as 

vr = v: + O(a~ , ) ,  vu9 = v i  + O(a~ , ) ,  

w n  

[v r]H = Aeat 2 2 anm P," cos mq5 + 
n=1 m=o 

where use has been made of the recurrence relation for sin 8 dPi:/d8 (Morse 
& Feshbach 1953, p. 1326). 

In  the following section, a potential will be designed to satisfy the 
boundary condition given by (7), and from this potential the hydrodynamic 
pressure will be calculated. 

B. Development of 'the solution 

written as 
The velocity potential must satisfy V2@ = 0. The potential may be 

@ = - 3 U(2r + R$~')cos 8 + a', ( 8 )  
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where @' contains terms of the first order only, and the first term is the 
familiar velocity potential for the flow about a sphere of radius R,. Aside 
from the first-order terms in (7), it is seen that the first term in (8) also 
contributes a first-order term in the radial component of the velocity when 
it is evaluated on the surface of the perturbed sphere, for 

Therefore, in addition to finding a potential which will satisfy equation (7), 
the potential must also cancel the contribution indicated in (9). If use is 
made of the recurrence relation for coseP,", equation (9) may be rewritten 

If one subtracts (10) from (7), an equivalent boundary condition remains 
to be satisfied, viz. 

( n  +2)(n-  rn + 1 )  ( n  - l ) ( n  + m) ~~- , ]cosm+.  ( 1 1 )  
X [  2n+1 %1- 2n+ 1 

The appropriate velocity potential is seen to be 

The pressure is calculated from 

Inasmuch as a first-order theory is being constructed, it is clear that the 
velocity components v,. and v4 will not contribute to the fluid pressure, 
since each is already of the first order in anm. The velocity component vg, 
on the other hand, is, from (12), 

p / p  + $w2 +a@/& = constant. (13) 

3 3u I L  1 a w  
2Ro n=1 ni=u R, ae = Usind- -- e"t 2 2 a7t1,LsinBPr cosm$+ - -, (14) 

so that 

[ V f l l i  - - U2 sin2d+ 

9 u 2 .  a 3 u a w  + - - ent 2 2 a,rm sin28P; cos m+ - - - sin d - , ( 1 5 )  4 R 0  n = l r n = o  2 R ,  86 
where terms of the first order only have been retained. If use is made of 
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the recurrence relation for sinzOP; (Morse & Feshbach 1953, p. 1326), 
it can be shown, after some algebra, that the fluid pressure as calculated 
from (13) is 

- ( n - m - l ) ( n - m )  (n-m+l)(n+2)(n+m-t1) - 
+ (2n - 1)(2n + 1) (292 + 1)(2n + 3) 

(n - 1)2(n2 - m2) - 
n(2n+ 1)(2n- 1) 

( n - m +  I)(n-m+Z) ( n - m +  l ) ( n +  l ) ( n - m + 2 )  e- , ,2-  1 - - [ (2n + 1)(2n + 3) (2n + 1)(2n + 3) 

P,"-2 cosm4- I 1  (n+m)(n+m-1) ( n - l ) ( n + m ) ( n + m - 1 )  - 
(Zn + 1)(2n - 1) (2n+ l)(2n- 1) 

3 m n  n(n-mml) 
2 n = l  m=o 

- - UAeAt 2 2 anm ~z+,]cosm++ 

P:-l cosmij, (16) 1 ( n - m +  1) (n - l ) ( n  + m) 
2n + 1 PF+1- n(2n + 1) 

where the terms a@/at and ~~@'/L~(cos 8) were calculated from (12). 
The action of surface tension at an interface between two fluids is to 

cause a discontinuity in the pressure across the surface, given by the relation, 

P i - P  = T(I/Rl + W Z ) ,  (17) 
where T is the surface tension, and Rl and R, are the principal radii of 
curvature, considered positive if the centres of curvature lie on the side to 
which the subscript i refers. For the perturbed sphere in the present 
problem, the following form for the sum of the curvatures, correct to first 
order, has been derived in Lamb (1932, p. 474), 

Substituting (16) and (18) into equation (17), one has for the equilibrium 
of the pressure terms that are independent of time, 

where the last two terms refer to the first-order fluid pressure and surface- 
tension stresses which are time-independent and symmetric with respect 
to the direction of motion. Equation (19) permits calculation of the 
deformation of the bubble as a function of the Weber number, which will 
be considered in a later section. For the equilibrium of the time-dependent 
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pressures terms at the surface of the bubble, one has 

(2n + 3)(2n + 5) 
( n + m + 2 ) ( n + m + l ) n  3 ( n + m +  1 ) (2n+1)  + 9 

7 W2an +2,m - z wA'a7t+1m ( n  + 1)(2n + 3) 

+ (2n - 1)(2n + 1 )  
9 ( n + m + l ) ( n + m + 2 )  ( n - m -  l ) ( n - m )  - [ (2n + 1)(2n + 3 )  

+ - W 2 a , ,  4 
(n - m + l ) ( n  + Z)(n + m + 1 )  

(2n + 1)(2n + 3 )  I+ ( n  - 1)2(n2 - m2) 
n(2n - 1)(2n + 1 )  

- - 

( n - m )  9 ( n -  m - l ) ( n -  m)(n-  2 )  
= 0, (20 )  

3 
(2n - l ) (2n  - 3 )  + - W2a,n-2,m 4 + 2 ~ ' a , , - l , m  ~ n 

where the conditions of orthogonality of the associated Legendre functions 
and the trigonometric functions have been employed, A' = A(pRi)1'2/ Tyz, 
and W denotes the Weber number. The ranges of n and m are n 2 0 and 
0 < m < n, and the a, for n < 0 are considered to be zero. That this 
equation should be equated to zero follows from the neglect of the perturba- 
tion pressures of the gas within the bubble. For the case of zero forward 
velocity ( U  = 0), equation (20)  reduces to the result obtained by Rayleigh, 
viz. 

I t  is clear that for this case there is no coupling of the modes, or otherwise 
stated, the coordinate system selected for the problem consists of the normal 
coordinates. Therefore, it is seen that the effect of a uniform translation of 
the bubble is, effectively, to couple the possible modes of oscillation, or at 
least the modes dependent upon 0 (i.e., the indices n).  In seeking solutions 
to (20) for the stability parameter A' as a function of the Weber number, 
it is clear that there will be distinct solutions A' for each m, with all the 
coupling modes (n )  contributing to these solutions. Therefore, the 
technique will be to assign a value to m and to solve numerically the resulting 
infinite determinant. The analysis will be concerned mainly with the smaller 
values of n and m, because these deformations most nearly simulate those 
observed in experiments, and also because the surface tension, which 
maintains stability of the shape of the bubble, is much more dominant than 
the hydrodynamic pressure for the higher-order deformations (n  large), 
as evidenced by the dependence on n2 of the term due to surface tension in 
(20). Actually the modes n = 1 ,  m = 1 and n = 2,  m = 1 are most closely 
representative of the observed motion of the bubble once instability occurs. 

C. Numerical solution of equation (20 )  for asymmetric modes. 
It has not been possible to obtain a general solution of (20) in closed 

form. Indeed, there is no general theory available for the numerical 
solution of a five-term recursion relation. However, for the neutral point 
of the stability calculation A' = 0, equation (20 )  reduces to a three-term 
recursion formula involving the Weber number and the anm. This relation 
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is analogous to the three-term recursion formula obtained in the calculation 
of the stability of the solutions of the Mathieu equation (Morse & Feshbach 
1953, p. 557). There it is shown that the unrn converge only for certain 
values of W2 and aZ1/al1. These characteristic values are found by the 
method of continued fractions. This technique is the same as forming 
the determinantal equation from (20) with A’ = 0 and solving the resulting 
polynomial in W 2  for the characteristic values. Of course, the determinant 
contains an infinite number of terms for each va!ue of m, but it is found that 
rapid convergence for the characteristic values W2 is obtained by cutting 
off the determinant in successively larger segments. This process of cutting 
off the determinant is equivalent to terminating the continued fraction. 
The rapid convergence is to be attributed to the term (n - l ) ( n  + 2) in (20) 
which predominates over the other coefficients which vary as n for large 
values of n for any given m. The results of this calculation give values of 
the critical Weber number for each m. To see that values of the Weber 
number smaller than this lead to stable solutions, the general equation (20) 
is solved by an analogous method to obtain a curve of Af2 vs W2. It is 
found in expanding the determinants that only even powers of A‘ occur, and 
further, regardless of the mode selected or order of the determinant included 
in the calculation, the values of A’2 are always real. That this should occur 
is suggested by the absence of any damping terms in the problem. From 
these facts it is clear that all solutions are either purely oscillatory < 0) 
or purely divergent > 0). 

The critical Weber number calculated as described above, for m = 1, 
is 1.65. Figure 6 shows how X2 varies with the Weber number as calculated 
from both the 2 x 2 and 4 x 4 determinants for m = 1. Going to higher 
order determinants gives results only negligibly different from those obtained 
from the 4 x 4 determinent. The amplitudes converge exceedingly rapidly. 

The curves of figure 6 indicate the possibility of stable oscillations 
of the bubble in the lower modes for Weber numbers ranging from zero to 
critical. Of course, these oscillations are not observed in the experiments, 
since in this range the bubbles are seen to rise rectilinearly. This discre- 
pancy may be explained by the absence of viscous effects in the theory. 
For Weber numbers of the order of unity to critical, the predicted values of 
A‘2 vary from - 0.5 to - 0.1. Since the non-dimensionalizing factor in A’2 
(i.e. T/pR:) is of the order of 1.5 x lo5, the actual values of ih range from 
250 to 120 approximately. This results in periods of oscillation between 
0-025 sec and 0.05 sec, which corresponds to the time required for the 
average bubble to travel only four and eight bubble diameters, respectively. 
At these relatively high frequencies of oscillation, it may be expected that 
viscosity would damp the motion rather completely, since the theory deve- 
loped by Rayleigh (see Lamb 1932, p. 640) may sensibly be applied. 
Consequently, the purely imaginary values of A’ encountered in the analysis 
are to be considered as representing stable motion of the bubble, with 
the possible exception of the points just short of the critical Weber number 
where X becomes equal to about 0-Oli. Then, perhaps, viscosity would 
be less significant in damping the stable oscillations. However, since the 
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objective of the theoretical analysis is to calculate the Weber number at 
which the bubbles become unstable, it does not seem necessary to dwell 
on the question of whether the observed instability occurs for equal to 
-0.01 or +0.01. For Weber numbers above critical, the motion is a 
purely divergent, asymmetric one which presumably represents a darting 
motion of the bubble to one side of its original path. Motion pictures of 
unstable bubbles leaving an orifice with vegetable dye in their wakes indicate 
that the amplitude of the oscillation is several bubble diameters. This 
is indicative of a non-linear motion, or at least, a motion that could not be 
derived from small-perturbation techniques. 
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Figure 6. Theoretical stability curve. 

T o  summarize the preceding paragraph, the predicted high-frequency 
steady oscillations of the bubble at small Weber numbers is interpreted to 
correspond to the steady rectilinear motion actually observed. The  
divergent motion predicted for Weber numbers above the critical value 
(or, what is equivalent, the slow steady oscillation predicted just below the 
critical W )  is interpreted to represent the large-amplitude oscillatory motion 
actually observed in that regime. 

In closing this section of the analysis, it is necessary to  mention once 
again that only very slight steady-state deformation of the bubble was 
considered, consistent with the neglecting of the squares of the perturbation 
amplitudes. In practice, it is found that the sub-critical bubbles are some- 
what more deformed in the shape of oblate spheroids than this calculation 
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may legitimately permit. This question will be considered in more 
detail in the following section. However, it may be said that the analysis 
presented here serves to explain qualitatively a possible mechanism for the 
instability of bubbles under the basic assumptions considered. 

4. DEFORMATION OF BUBBLES AND ITS EFFECTS ON THE STABILITY 

The deformation of bubbles from the spherical shape as they rise 
uniformly in an inviscid fluid under the action of the hydrodynamic pressure 
and surface tension may be calculated from the steady-state terms of the 
previous calculation (see (19)), at least to first order in the perturbation 
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Figure 7. Bubble deformation calculated by approximate methods. 

amplitudes. 
from (16). 
equations is solved by Cramer’s rule, one obtains 

The relations for p(i  = ,,, = ,) and q; = O,m = ,) may be calculated 
If the resulting system of linear, inhomogeneous algebraic 

(22) 
a20 ~ 3 W2(3.58W2-18) - - 
R, * 7 (5*52W4 - 43*6W2 + 72)’ 

approximately. Again the infinite set of algebraic equations has been 
terminated and rapid convergence has been obtained. The ratio a,,/R, 
is a measure of the deformation of the sphere into an ellipsoid at various 
Weber numbers. That 
such large deformations in shape are predicted by the linear theory is, at 
first thought, quite alarming, for it places in question the application of the 
stability calculation of the previous section to gas bubbles rising in liquids. 
It is observed that just sub-critical bubbles are quite deformed in the 
experiments-almost as much as indicated by (22). Therefore the possible 
effect of ellipticity of the bubbles on the quantitative values of the stability 
criterion of the asymmetric modes will be dealt with in this section. It will 
be shown that the qualitative behaviour is not altered. 

To  obtain an estimate of higher-ordered effects in the deformation of 
a bubble in an inviscid fluid, one may start with the pressure distribution 

Equation (22) is plotted in figure 7 (dashed line). 
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about an oblate spheroid in such a fluid, and knowing the principal radii 
of curvature at the stagnation point (0 = 0) and equator (0 = n/2), simply 
require that the general equilibrium condition (17) be satisfied only at these 
points. The hydrodynamic pressure at the equator is given by 

p = 1  Z P  u2- 4P U2(1 + (23) 

where K, = (0.622B-0.122) (23 a) 
and E is the ratio of semi-major to semi-minor axes (bla). The values of K, 
are tabulated in a paper by Zahm (1926). The sum of the reciprocals of 
the principal radii of curvature at the equator is (b/a2 + l /b ) ,  while that 
at the stagnation point is 2a/b2. Therefore, for equilibrium, 

p i  = &p U2 + 2a T/b2 (24) 

and pi = QpU2-QpUa(l +Q2+ T(b/a2+l /b) ,  (24 a) 

T(2a/b2 - b/a2 - l / b )  = - &pU2( 1 + K,J2. (25) 

ab2 = R;, i.e. b = R, (26) 

and since the gas pressure within the bubble (pi) is uniform, 

T o  maintain constant volume, we have 

The Weber number obtained by solving (25) and (26) is 

2 ( E 2 + 1 - 2 / E )  
w2 = E1/3 ( 1  ’ 

which gives the deformation of the bubbles as a function of the Weber 
number. Since the semi-minor axis of the spheroid is equal to Ro/E2l3 
and the amplitude ratio a,,/R, = (a/R,  - l ) ,  we may use the relation 
a,,/R, = (E-2/3 - 1 )  in conjunction with (27) to plot this latter equation 
adjacent to (22) in figure 7 (solid curve). The results show that (27) verifies 
the linearized theory for small Weber numbers, but gives smaller 
deformations for somewhat larger values. 

The existence of distortion in the shape of the bubbles would make the 
perturbation of an oblate spheroid, rather than a sphere, seem a more 
reasonable attack on the problem of the stability of the bubbles. The 
equations, employing oblate spheroidal coordinates, have been derived. 
Though not amenable to complete solution immediately, this analysis further 
verifies the qualitative correctness of the theory developed for the sphere, 
and together with the ‘ two-point ’ calculation mentioned above, suggests 
a method for deriving better quantitative results from this theory. Briefly, 
this method consists in replacing the form (3/2)Usin 0 for the tangential 
velocity by the increased value appropriate to an oblate spheroid of any given 
eccentricity (Zahm 1926), in the boundary condition (5) .  If this is done, 
it is found that instead of having 9/4W2 equal to the characteristic value of 
(20) for the neutral stability point (A’ = 0), the square of the increased value 
replaces the coefficient 9/4. Thus, an improved estimate of critical Weber 
number may be obtained for any assumed deformation E (equal to the ratio 
of semi-major to semi-minor axes of the spheroid). But the appropriate 
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deformation is actually a function of Weber number, and may be estimated 
by the ' two-point ' calculation. The  consistent case is the one for which 
the critical Weber number is just that required to  produce the assumed 
deformation. This 
Weber number is in excellent agreement with the experimental value. 
Moreover, the deformation of bubbles in most of the pure, fast liquids just 
prior to instability, as estimated from photographs supplied by Haberman 
& Morton, is approximately given by E = 2.1. An outstanding exception 
is provided by bubbles in theJiltered water employed by these experimenters, 
where E = 1.5. The  present authors employing double-distilled water 
available commercially, obtained a deformation E = 1.75. 

It is suggested from the results of these approximate calculations that 
the deformation of the bubbles prior to oscillation reduces the value of the 
critical Weber number as calculated from the perturbation of an essentially 
spherical bubble, thus bringing it into better agreement with observations. 
Throughout this section it has been implied that the Weber-number effects 
are largely responsible for the actual deformation of the bubble ; hence the 
present agreement with experimental results supports all previous experi- 
mental evidence in establishing the dominance of these effects for bubbles 
rising in the pure, fast liquids at Weber numbers near and somewhat 
beyond the critical value. 

This turns out to be E = 2.20, for which W,, = 1.23. 

5. CONCLUSIONS 
T h e  conclusions derived from the experiments were listed at the end of 

$ 2 .  From the theoretical analysis, the following conclusions may be drawn. 
1.  The  results derived from the investigation of the stability of a 

deformable sphere in a uniform, inviscid, incompressible and irrotational 
flow by the perturbation of the shape of the sphere, indicate, at least 
qualitatively, that the interaction of surface tension and hydrodynamic 
pressure provides a possible mechanism of instability. In  fact, in any 
situation where the deformable sphere is not subjected to considerable 
changes in shape just prior to the onset of instability, this analysis would 
be expected to give accurate quantitative results as well. 

2. The  agreement between the approximate theory and the experimental 
results for the steady-state deformation of the bubbles under the action of 
only hydrodynamic pressure and surface tension, for moderate values of 
the Weber number, provides additional evidence of the important roles 
played by these effects in the motion of bubbles in that range. 

3. The  inclusion of the effects of deformation of bubbles by approximate 
methods in the stability calculation of the nearly spherical bubble yields 
a critical Weber number of 1.23, which agrees well with the experimental 
value. 
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NOTE ADDED IN PROOF 

In  discussion of the stability curve (figure 5) since submission of this 
paper, the question has been raised whether the horizontal ( W = 1-26) 
and vertical (Re = 202) branches of this curve should not be extended 
to the left and upward, respectively, from their point of intersection. 
In  answer to this question, the authors point out that neither they nor 
other experimenters have observed oscillations in these regions of the 
diagram. As a bubble rises from rest in a liquid, its instantaneous Weber 
and Reynolds numbers trace a curve that rises toward the right from the 
origin in figure 5, its steepness depending on the fluid properties. For 
the experimental points plotted in figure 5, a Reynolds-number-dependent 
fluid produces instability when this curve crosses Re = 202; a Weber- 
number-dependent fluid does not cause instability as the curve crosses 
this branch, but only where it reaches Ft’ = 1.26. The ‘ more viscous 
liquids ’ mentioned on page 28 seem to be those whose trajectory curves 
rise to the left of the point (202, 1.26) in figure 5, and, as mentioned, these 
do not exhibit instability at all. T o  be sure, there are only a few data on 
these liquids; nevertheless, the extrapolation of the horizontal and vertical 
branches of the stability curve must be considered unwarranted at present. 


